Supplying a Semi-Fixed Foam System, a Case Study

February 25, 2013
SFPE Chicago Chapter
John Frank, P.E., Fire Officer IV
Immediate Past President, Greater Atlanta Chapter, SFPE
Supplying a Semi-Fixed Foam System, a Case Study

November 12, 2012
SFPE Greater Atlanta Chapter Meeting
J. Frank, D. Helsel, R. Hesprich, S. Woodworth
Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

© Society of Fire Protection Engineers, 2010
Learning Objectives

1. Understand the benefits and limitations of semi-fixed fire protection systems

2. Understand the specific issues associated with using Aircraft Rescue and Firefighting (ARFF) Vehicles to supply semi-fixed foam systems protecting bulk fuel storage tanks
Background

- Steve
- Rhett
- Don
- John

- How we all came together on this project
Semi-Fixed Systems are Common
Semi-Fixed CO₂
From NFPA 11
The usual supply vehicle
Proportioning, Water, Initial Foam
Proportioning, 3% AFFF
Foam Injection Piping
Fire Department Connection
Follow-on Foam
Sub-Surface Injection on Some Tanks
Air inlets, pumping 4:1 expanded solution
Expanded Foam Friction Loss
NFPA 11 and HFPE
Sub surface injection, not topside

Figure 4-5A.1. Foam friction losses—4:1 expansion (2½", 3", 4", 6", 8", and 10" pipe).
SPECIFICS
What we needed to know

- Tank and fuel characteristics
- Design foam solution flow rate and duration
- System demand flow and pressure (similar to DBOR)
- System k factor
- Actual flow at actual supply pressure
- Foam concentrate needed at actual flow
Tank and Fuel

- Cone roof tank
- Type II discharges
- Jet A, Class II liquid

Table 5.2.5.2.2 Minimum Discharge Times and Application Rates for Type II Fixed Foam Discharge Outlets on Fixed-Roof (Cone) Storage Tanks Containing Hydrocarbons

<table>
<thead>
<tr>
<th>Hydrocarbon Type</th>
<th>Minimum Application Rate</th>
<th>Minimum Discharge Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L/min · m²</td>
<td>gpm/ft²</td>
</tr>
<tr>
<td>Flash point below 37.8°C (100°F) or liquids heated above their flash points</td>
<td>4.1</td>
<td>0.10</td>
</tr>
<tr>
<td>Crude petroleum</td>
<td>4.1</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Calculations

• Surface Area = 0.7854 X Diameter\(^2\)
• 80 foot diameter = 5027 ft\(^2\)
• 5027 ft\(^2\) X 0.1 gpm/ft\(^2\) = 502.7 gpm
• Actual demand = 505 gpm
• Foam concentrate = 505 gpm X 3% = 15.15 gpm
• 15.15 X 30 minutes = 454.5 gallons concentrate
• Supplementary hose to come from other vehicles
System Calculations, HFPE

For airport example, 505 gpm @ 115 psi
Calculations

- 505 gpm @ 115 psi
- $Q = k\sqrt{p}$
- $K = Q/\sqrt{p} = 47.1$
- At 150 psi @ FDC, flow = 577 gpm

Hose friction loss, $0.8Q^2$

- Actual foam @150 psi = 577 X 3% = 17.3 gpm
- = 519 gallons AFFF
- Crash truck carries 420 gallons/17.3 gpm = 24 min supply – need foam tanker
- Extra for over pressure and over proportioning – need foam tanker hooked up in 15 min – Striker empty in 18 minutes
Pressure Control

- Industrial foam pumpers can control pressure fairly easily, they are built for this.
- ARFF vehicle pumps discharge at 240 psi.
- Very hard to regulate to 150 psi through a quarter turn valve.
Pressure control

- "Structural kits" are available but are an expensive add-on, and not required for the crash rescue mission.
- The vehicle’s idle speed generates lower pressure but still adequate flow for these tanks.
 - Manage effect of pump curve flow < 1950 gpm
 - Application of the pump affinity laws
 - Actual 166 psi at FDC
Pump Affinity Laws - FPH

PUMP AFFINITY LAWS

The mathematical relationships among head, capacity, brake horsepower, and impeller diameter are called the pump affinity laws. Law 1 assumes constant impeller diameter with change of speed. Law 2 assumes constant speed with change in diameter of the impeller. These laws are expressed by proportion, as follows:

Law 1

\[
\frac{Q_1}{Q_2} = \frac{N_1}{N_2}, \quad \frac{H_1}{H_2} = \frac{N_1^2}{N_2^2}, \quad \frac{\text{bhp}_1}{\text{bhp}_2} = \frac{N_1^3}{N_2^3}
\]
Proportioning, 3% AFFF

- Somewhat iterative
- Estimate flow
 - idle rpm and resulting actual FDC pressure
 - k factor
- Set metering valve for that flow
- NFPA 11 range 3-3.9%
Proportioning, 3% AFFF
Simplified Around the Pump Proportioner

From NFPA 11
OPERATION
Water Resupply
Measurement

• Flow measurement
• Foam concentration measurement
The Result, Through The Manhole

- 606 gpm @ 166 psi (compare to 577 @ 150 psi and 505 @ 115)
- 4% initial proportioning
- Adjusted metering valve to 3.74% avge proportioning
 - Would have used 680 gpm AFFF over 30 min
 - Would have emptied ARFF tank in 18.5 min
Technical Issues

- These ARFF vehicles not designed for this task
- Had to be “tricked” into working this way
- Bypassed turret/handline proportioning valve
- Half of the vehicles had foam sensors in the structural outlets
 - As soon as foam flow was detected, the pump speed increased to provide 240 psi; is too high
- Prior to test, no one could verify that foam could be discharged from the structural outlets at idle
Attempt Using Quint

502 gpm 2.95% proportioning

Foam tank too small, foam system capacity too low
Not intended of this kind of task
Doing This Elsewhere

• Each type of vehicle has to be tested
• Low idle would not have been enough for larger tanks
 – remember pump affinity laws
• Pump takes suction from the 3000 gallon water tank
 – refill line not sized with this in mind
 – NFPA 414 requires two minute refill capability @ 80 psi inlet
 – K factor 168 for this vehicle
 – compare to refill source performance
• Full crash mode is very stressful on the engine
 – overheating during long duration in this mode
• Other types of proportioning systems
Going Forward

• Is 166 psi @ FDC acceptable? – Gauge on FDC will solve
• Atlanta is purchasing an industrial foam pumper
 – Purpose-built for this function
 – Existing Foam pumper was not evaluated
• Incident Commander now chief of special ops then city-wide shift commander

LA County FD Foam Unit Prototype for Atlanta
Thank you for your time.

Questions?

This concludes the educational content of this activity.